Ø 12-108 мм

CI/ICTEMA KAN-therm

Steel

Традиционный материал в новаторском исполнении

ТЕХНОЛОГИЯ УСПЕХА

Оглавление

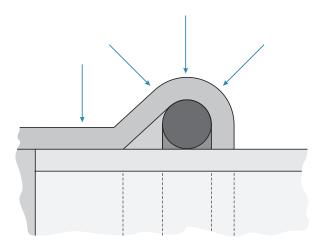
5 Система **KAN-therm** Steel

Современная технология соединений	155
Технология надежных соединений	156
Возможности применения	156
Достоинства	156
Монтаж соединений	156
Инструмент	161
Инструмент-безопасность	163
Функция LBP	163
Подробная информация	163
Данные об удлинении и теплопроводности	164
Рекомендации по применению	164
Резьбовые соединения и взаимодействие с другими системами KAN-therm	165
Крепление трубопроводов.	166
Выполнение точек неподвижной PS и подвижной опоры PP	166
Компенсация удлинения	167
Подбор Г, Z и П-образных компенсаторов	167
Система KAN-therm Steel - ассортимент	171
Инструмент для соединений Steel	184

5 Cuctema KAN-therm Steel

KAN-therm Steel - это комплексная инсталляционная система, состоящая из стальных труб и соединителей с диаметрами от Ø12 до Ø108 мм. Трубы и соединители в Системе KAN-therm Steel выполнены из высококачественной стали с низким содержанием углерода. Они оцинкованы снаружи, что является антикоррозийной защитой наружной поверхности труб и соединителей.

Современная технология соединений


Применение в Системе KAN-therm Steel технологии "press" дает возможность для быстрого и надежного выполнения соединений через обжим (опрессовку) соединителей при помощи общедоступных прессов, минуя при этом процесс свинчивания или сварки отдельных элементов. Это позволяет быстро монтировать оборудование даже при применении труб и соединителей больших диаметров.

Трубы и фитинги Системы KAN-therm Steel изготавливаются из тонкостенной стали, что значительно снижает вес отдельных элементов и облегчает монтаж оборудования.

Соединение элементов по технологии "press" позволяет свести к минимуму сужение сечения трубы, что значительно уменьшит потери давления во всей системе и создаст оптимальные гидравлические условия.

Технология надежных соединений

Герметичность соединений в Системе KAN-therm Steel обеспечивает специальное уплотнение O-Ring и четырехточечная система обжима типа "М".

Возможности применения

- системы отопления закрытого типа (не следует применять для систем холодного, горячего водоснабжения и циркуляции),
- __ системы водяного охлаждения.

Достоинства

- __ быстрый и надежный монтаж оборудования без сварки и свинчивания,
- ___ большой диапазон диаметров труб и соединителей до 108 мм,
- широкий диапазон рабочих температур от -35°C до 135°C,
- _ стойкость к высокому давлению, до 16 бар,
- ___ возможность объединения с полимерными системами KAN-therm Press и Push,
- небольшой вес труб и соединителей,
- высокая эстетичность выполненного оборудования,
- стойкость к механическим повреждениям.

Монтаж соединений

Отрезание трубы

Трубы следует отрезать роликовым труборезом перпендикулярно оси трубы (отрезать полностью, без отламывания надрезанных кусков трубы). Можно использовать другие инструменты при условии, что будет соблюдена перпендикулярность разреза и не будет повреждений отрезаемых краев в виде заусениц, зазубрин и деформаций сечения трубы. Не допускается использовать инструменты термической резки, которые выделяют значительное количество тепла, например, горелки, "болгарки", и т.п.

Снятие фаски с торцов трубы

Используя ручной фаскосниматель (для диаметров 66,7 - 108 используется полукруглый напильник для стали), необходимо снять фаску с внутреннего и наружного торца отрезанной трубы, удалить из нее все опилки, которые могут повредить уплотнение O-Ring в процессе монтажа. Инструмент для снятия фаски (фаскосниматель) также может устанавливаться на механических инструментах (например, на дрели).

Отметка глубины вставки трубы в фитинг

Чтобы сохранить надлежащую надежность соединений, необходимо соблюдать соответствующую глубину вставки трубы в фитинг A (таб.1, рис. 1). После вставки трубы в фитинг до упора, следует отметить глубину вставки на трубе или на фитинге с нипельным концом (без раструба) специальным маркером. После опрессовки отметка должна быть видна рядом с краем фитинга. Для обозначения глубины вставки, без подгонки к фитингу, также служат специальные шаблоны.

4 Контроль

Перед монтажом следует проконтролировать наличие прокладки O-Ring в фитинге и удостовериться, не повреждена ли она, а также, нет ли каких-либо загрязнений (опилок или других острых частиц), которые могли бы повредить прокладку O-Ring во время вставки трубы. Необходимо также убедиться, что расстояние между соседними фитингами не меньше, чем указанное d_{min} (таб.1, рис.1).

Монтаж трубы и соединителя

Перед выполнением соединения необходимо соосно вставить трубу в соединитель на отмеченную глубину. Для облегчения монтажа допускается легкое проворачивание трубы относительно соединителя. Запрещается применять масла и смазку с целью облегчения вставки трубы (возможно использование воды или мыльного раствора - рекомендуется при испытаниях герметичности системы сжатым воздухом). В случае монтажа большого количества соединений по принципу вставки трубы в соединители, а затем выполнения операции опрессовки, важно контролировать глубину вставки труб в соединитель перед каждой опрессовкой, ориентируясь на отметки, предварительно нанесенные на трубу маркером.

6 Опрессовка

Перед началом процесса опрессовки (обжима) необходимо удостовериться в исправности инструмента. Рекомендуется использовать прессы и пресс-клещи, предоставляемые Системой KAN-therm Steel. Необходимо всегда подбирать размер пресс-клещей соответственно диаметру выполняемого соединения. Пресс-клещи должны быть расположены на соединителе таким образом, чтобы их профиль обжима точно охватывал место размещения О-Ringa в соединителе (раструб - выпуклую часть соединителя). После запуска пресса процесс обжима происходит автоматически и не может быть остановлен. Если по каким-либо причинам процесс опрессовки прервется, соединение необходимо демонтировать и выполнить новое. Если монтажник имеет пресс и пресс-клещи, которые не поставляются Системой KAN-therm Steel, то о возможности их использования следует проконсультироваться с фирмой KAN.

Опрессовка соединителей 66,7 - 108 мм Подготовка пресс-клещей

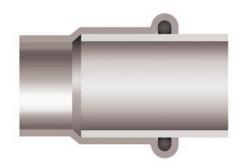
Для опрессовки больших диаметров Steel и Inox (64, 66,7, 76,1; 88,9; 108) используются специальные 4-х элементные пресс-клещи (пресс-кольцо). Достав пресс-клещи из чемодана, следует разблокировать их, вынув специальный стопорный штифт, и затем раскрыть их.

Установка пресс-клещей на фитинге

Раскрытыми пресс-клещами обхватить фитинг. Пресс-клещи имеют специальную выемку, которую необходимо подогнать к выпуклой части фитинга.

- Внимание: В случае пресс-клещей 66,7 108 для пресса Klauke UAP100, табличка с маркировкой размера пресс-клещей (см. фото вверху) всегда должна находиться со стороны трубы.
- После правильного обхватывания фитинга пресс-клещами необходимо снова зафиксировать их, максимально вставив стопорный штифт. Пресс-клещи готовы к подключению пресса.

Подключение пресса к пресс-клещам

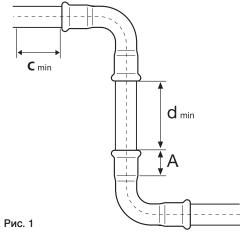

Пресс должен быть подключен к пресс-клещам, как показано на рисунке. Обязательно следует проследить, чтобы зажимающие рычаги пресса были до упора вставлены в пресс-клещи (см. фото). Граница максимальной вставки отмечена стрелкой на рычагах. Подключенный пресс можно запускать с целью выполнения опрессовки (обжима) соединения.

Опрессовка

Время полной опрессовки составляет около 1 мин. После запуска пресса процесс обжима происходит автоматически и его нельзя остановить. Если по какимто причинам процесс обжима будет остановлен (прерван), соединение следует демонтировать (вырезать) и выполнить снова правильно. После выполнения обжима пресс автоматически вернется в исходное положение. В этот момент необходимо извлечь рычаги пресса из пресс-клещей. Чтобы снять пресс-клещи с фитинга, следует снова вынуть стопорный штифт и раскрыть их. Пресс-клещи должны храниться в чемоданах в защищенном состоянии, т.е. зафиксированы штифтом.

Каждый раз перед тем, как приступить к работе, а также через интервалы времени, установленные производителем, необходимо проверять и смазывать инструмент.

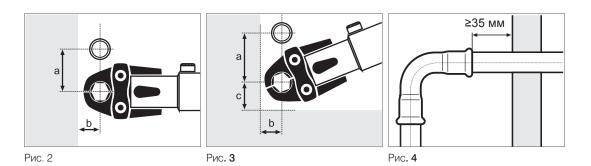
Соединители перед и после опрессовки



Монтажные расстояния

Таб. 1 Глубина вставки трубы в фитинг и минимальное расстояние между опрессованными фитингами

Ø [мм]	А [мм]	d _{min} [мм]
12	17	10
15	20	10
18	20	10
22	21	10
28	23	10
35	26	10
42	30	20
54	35	20
64	50	30
66,7	50	30
76,1	55	55
88,9	63	65
108	77	80


А - глубина вставки трубы в фитинг,

d_{min} - минимальное расстояние между фитингами, учитывая правильность выполнения опрессовки

Таб. 2 Минимальные монтажные расстояния

G [ma]	Рис	c. 2	Рис. 3					
Ø [мм]	а [мм]	р [мм]	а [мм]	b [мм]	с [мм]			
12/15	56	20	75	25	28			
18	60	20	75	25	28			
22	65	25	80	31	35			
28	75	25	80	31	35			
35	75	30	80	31	44			
42	140/115*	60/75*	140/115*	60/75*	75			
54	140/120*	60/85*	140/120*	60/85*	85			
64	145*	110*	145*	100*	100*			
66,7	145*	110*	145*	100*	100*			
76,1	140*	110*	165*	115*	115			
88,9	150*	120*	185*	125*	125			
108	170*	140*	200*	135*	135			

*касается пресс-клещей с 4-х элементными щеками

Инструмент

Система KAN-therm поставляет инструмент разной конфигурации в зависимости от монтируемого диаметра. Для подбора оптимального комплекта инструмента может служить нижеприведенная таблица:

Таб. 3 Таблица подбора инструмента Системы KAN-therm Steel & Inox

Произ-	Тип пр	ecca	Писмета	Пресс	-клещи	Ада	птер	Ţ	ип Сис	темы KAN-t	herm	
води- тель	Модель	Код	Диаметр [мм]	Модель	Код	Модель	Код	Steel	Inox	Steel Sprinkler	Inox Sprinkler	
			12	M12	570100	-	-	+	-	-		
			15	M15	570110	-	-	+	+	-	-	
	Ш		18	M18	570120	-	-	+	+	_		
REMS wer Press	ower Press Aku Press	ZAPR01 ZAPRAK	22	M22	570130	-		+	+			
Æ	Power Press E Aku Press	ZAP	28	M28	570140	-	-	+	+	_		
	ш		35	M35	570150	_		+	+			
			42	M42	570160	-	-	+	+	-	-	
			54	M54	570170	-	-	+	+	-	-	
			64	KSP3 64	BP64M	-		+		_		
			67	KSP3 66,7	BP667M	-	-	+	-	-	-	
KLAUKE	UAP100	UAP100	JAP100	76,1	KSP3 76,1	BP761M	-	-	+	+	-	-
¥		_	88,9	KSP3 88,9	BP889M	-	-	+	+	-	-	
			108	KSP3 108	BP108M	-	-	+	+	-	-	
			12	M12	620572.7	-	-	+	-	-	-	
			15	M15	620573.8	-	-	+	+			
			18	M18	620574.9	-	-	+	+	-	-	
			22	M22	620575.1	-	-	+	+	+	+	
	100	5.5	0.5	28	M28	620576.0	-	-	+	+	+	+
	ECO301	620570.5	35	HP 35 Snap On	634106.0			+	+	+	+	
NOVOPRESS			42	HP 42 Snap On	634107.1	ZB 303	634111.5	+	+	+	+	
NOVC			54	HP 54 Snap On	634108.2		_	+	+	+	+	
			66,7	M 67	634139.0	ZB 323	634143.4	+	+	-	-	
			76,1	HP 76,1	634009.2	-	-	+	+	+	+	
	Ξ	- -	88,9	HP 88,9	634010.3	-	-	+	+	+	+	
	ACO401	634008.1	108	HP 108	634011.4	-	-	+	+	+	+	
	∢	8	139,7	HP 139,7	BF139	-	-	-	+	-	-	
			168,3	HP 168,3	BF168	-	-	-	+	-	-	

Инструмент REMS:

1. Πρεсс Aku Press 2. Πρεсс Power Press E **3.** Пресс-клещи M12-54 мм

Инструмент KLAUKE:

1. Пресс UAP100 2. Пресс-клещи KSP3 64-108 мм

Инструмент NOVOPRESS:

1. Пресс ECO 301 2. Пресс-клещи M12-28 мм 3. Пресс-клещи HP 35 Snap On

4. Пресс ACO 401 **5.** Пресс-клещи HP 42, HP 54

6. Пресс-клещи М67

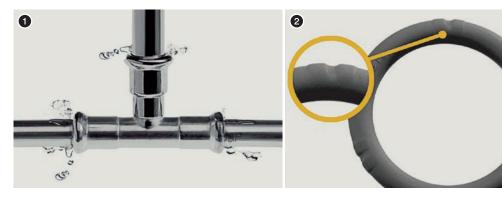
Snap On

7. Пресс-клещи НР 76,1 - 168,3 8. Адаптер ZB 303 9. Адаптер ZB 323

Инструмент-безопасность

Весь инструмент должен применяться и эксплуатироваться в соответствии с его назначением и инструкцией по техническому обслуживанию от производителя.

Использование инструмента в других целях или в другой сфере считается несовместимым с его назначением.


При целевом использовании инструмента необходимо также следовать инструкциям эксплуатации, соблюдать условия техосмотра, обслуживания и соответствующие правила техники безопасности в их актуальной версии.

Все работы, выполненные с использованием инструмента не по назначению, могут привести к поломке инструмента, порче соединителей и трубопроводов, и как следствие - к негерметичности соединений и/или повреждению места соединения трубы с фитингом.

Функция LBP

Все фитинги Системы KAN-therm Steel обладают функцией LBP (Leak Before Press сигнализация о неопрессованных соединениях - "неопрессован - не герметичен"). В диапазоне диаметров 12-54 мм функция реализуется с помощью уплотнительных прокладок типа O-Ring. Благодаря специальным желобкам O-Ring LBP обеспечивает оптимальный контроль соединений во время испытаний на давление. Неопрессованное соединение не герметично, и поэтому легко выявляется. Для диаметров выше 54 мм функция LBP реализована через соответствующую конструкцию фитинга (овализация гнезда фитинга).

1. Действие O-Ring с функцией выявления неопрессованных соединений LBP
2. O-Ring с функцией выявления неопрессованных соединений LBP



Подробная информация

Трубы и фитинги - материал

Углеродистая сталь RSt 34-2 номер материала 1.0034 соотв. DIN EN 10305-3, трубы, оцинкованные снаружи гальваническим способом (Fe/Zn 88) слоем толщиной 8-15 мкм.

Уплотнительные прокладки типа O-Ring и плоские прокладки

Наименование прокладки

Свойства и параметры работы

Применение

FPM /Viton (фторкаучук)

цвет: зеленый макс. рабочее давление: 16 бар рабочая температура: -30°C до 200°C кратковременно: 230°C

солнечные системы (гликоль) установки сжатого воздуха системы на жидком топливе жиры, растительного происхождения моторное топливо

Внимание!!

Не применять с рабочей средой вода!

FPM Viton (плоская прокладка)

цвет: зеленый макс. рабочее давление: 16 бар рабочая температура: -30°C до 200°C кратковременно: 230°C солнечные системы (гликоль) установки сжатого воздуха системы на жидком топливе жиры, растительного происхождения моторное топливо

Внимание!!

Не применять с рабочей средой вода!

Фитинги стандартно снабжаются O-Ring прокладками EPDM.

В случае специфического применения отдельно поставляются O-Ring прокладки Viton. В случае необходимости замены стандарных уплотнительных прокладок EPDM на Viton запрещается еще раз использовать демонтированные прокладки O-Ring. В каждом случае применения, выходящем за рамки систем отопления закрытого типа, необходимо консультироваться с фирмой KAN.

Данные об удлинении и теплопроводности

	Коэффициент линейного удлинения [мм/(м×К)]	Удлинение отрезка длиной 4 м при повышении темп. на 60°C [мм]	Теплопроводность [Вт/(м²×К)]
Steel	0,0108	2,59	58

Рекомендации по применению

- Стальные трубы KAN-therm Steel запрещено сгибать в горячем состоянии. Допускается сгибание труб в холодном состоянии при условии соблюдения минимального радиуса изгиба (R=3,5×d_{нар}). Наружная поверхность труб в процессе складирования и эксплуатации не должна подвергаться длительному контакту с влагой.
- Не рекомендуется в холодном состоянии сгибать трубы с диаметром больше Ø28 мм.
- Рекомендуется использовать готовые дуги, а также отводы 90° и 45°, поставляемые Системой KAN-therm Steel.
- Для разрезания труб не рекомендуется применять инструмент, который может в процессе работы выделять большое количество тепла, например, горелки, шлифовальные резаки. Для резки труб KAN-therm Steel применяются только роликовые труборезы (ручные и механические).
- Не рекомендуется опорожнять систему, заполненную водой. В случае необходимости опорожнения системы после испытаний на давление, рекомендуется проводить испытания давлением с помощью сжатого воздуха.
- При прокладке Системы KAN-therm Steel в строительных ограждениях следует применять герметичную изоляцию труб и соединителей, учитывая компенсацию термических удлинений и защиту от строительной химии.
- При возможном контакте труб и фитингов Системы KAN-therm Steel с влажной или иной коррозийной средой необходимо применять герметичную гидроизоляцию.
 Толщина изоляции не должна препятствовать свободной термической работе оборудования - компенсации.

- По вопросу о возможности использования труб KAN-therm Steel для транспортировки химических субстанций следует посоветоваться с отделом технического консультирования KAN.
- Оборудование, выполненное в Системе KAN-therm Steel, необходимо заземлять.

Резьбовые соединения и взаимодействие с другими системами KAN-therm

Система KAN-therm Steel предлагает широкий ассортимент соединителей с наружной и внутренней резьбой. Так как стальные фитинги имеют наружную резьбу с коническим профилем, то допускается только соединение латунных элементов KAN-therm Push и Press с наружной резьбой и стальных фитингов Системы KAN-therm с внутренней резьбой, уплотняемое небольшим количеством пакли.

Чтобы не нагружать резьбовое соединение, рекомендуется выполнять сначала резьбовое соединение (свинчивать), а затем пресс-соединение.

Рекомендуемый способ соединения полимерных систем (Push, Press) со стальными системами (Steel, Inox) - правильное выполнение резьбового (свинчиваемого) соединения.

Уплотнение резьбы

Для резьбовых соединений рекомендуется применять паклю в таком количестве, чтобы еще были видны винтовые выступы. Использование слишком большого количества пакли грозит разрушением резьбы. Намотка нити пакли сразу за первым витком резьбы позволит избежать перекоса при ввинчивании и повреждения резьбы.

Внимание

Запрещается использовать клеи и химические средства, уплотняющие резьбу.

Элементы Системы KAN-therm Steel могут соединяться (посредством резьбовых или фланцевых соединений) с элементами, выполненными из других материалов (смотри таблицу ниже).

Возможные сочетания Систем KAN-therm Steel и Inox с другими материалами

		Трубы/Фасонные изделия								
Тип си	істемы	Медь	Бронза/Латунь	Углеродистая сталь	Нержавеющая сталь					
Steel	закрытая	да	да	да	да					
Steel	открытая	нет	нет	нет	нет					
lmay	закрытая	да	да	да	да					
Inox	открытая	да	да	нет	да					

Следует помнить, что непосредственное соединение элементов из нержавеющей стали с элементами из оцинкованной углеродистой стали (например, трубы) может привести к контактной коррозии. Этот процесс можно предотвратить за счет использования полимерных или нежелезных металлических (бронза, латунь) вставок с минимальной длиной 50 мм (например, использование латунного шарового вентиля).

Крепление трубопроводов

Максимальные монтажные расстояния между креплением трубопроводов приведены в таблице 4:

Таб. 4 Максимальные монтажные расстояния между креплением трубопроводов

Диаметр трубы [мм]	Расстояние между креплением [м]
12	1,00
15	1,25
18	1,50
22	2,00
28	2,25
35	2,75
42	3,00
54	3,50
64	3,75
66,7	4,25
76,1	4,25
88,9	4,75
108	5,00

Крепление может быть реализовано как:

- подвижные опоры РР. Подвижные (скользящие) опоры должны предоставлять возможность для свободного осевого перемещения трубопроводов (вызываемого термическим удлинением). В связи с этим их не следует монтировать непосредственно около соединителей (минимальное расстояние от края соединителя должно быть больше максимального удлинения отрезка трубопровода). Роль подвижных опор могут выполнять "неплотно затянутые" металлические хомуты с резиновым вкладышем.
- точки неподвижной опоры PS. Для выполнения точек неподвижной опоры (PS) следует применять металлические хомуты с резиновым вкладышем, которые позволяют точно и надежно фиксировать трубу по всему периметру. Хомут должен максимально плотно обжимать трубу.
- подпорка под трубопроводом не допускает перемещения трубопровода вниз
 применяются, если требуемое место размещения подвижной опоры будет ограничивать перемещение трубопровода на длине компенсационного плеча.

Выполнение точек неподвижной PS и подвижной опоры PP

- точки неподвижной опоры должны препятствовать любым перемещениям трубопровода, поэтому их необходимо монтировать рядом с соединителями (по обеим сторонам двухстороннего соединителя, тройника и т.п.),
- хомуты, представляющие собой точки неподвижной опоры или подвижные опоры, нельзя монтировать непосредственно на фитингах,
- при монтаже точек неподвижных опор около редукционных тройников следует обратить внимание, чтобы хомуты, блокирующие трубопровод, не были смонтированы на ответвлениях с диаметром меньшим, чем на один типоразмер, относительно диаметра главного трубопровода (усилия, вызванные действием труб большого диаметра, могут деформировать трубы малого диаметра),
- подвижные опоры допускают свободное перемещение только вдоль оси трубопровода (их следует трактовать, как точки неподвижной опоры для перпендикулярного направления к оси трубопровода) и должны быть выполнены при помощи хомутов,
- подвижные опоры не должны монтироваться около соединителей, если это может привести к блокированию термических перемещений трубопровода,

 следует помнить, что подвижные опоры препятствуют перемещениям, поперечным к оси трубопровода, поэтому их расположение может влиять на длину компенсационных плеч.

Компенсация удлинения

При повышении температуры воды на величину ΔT трубопровод удлиняется на ΔL . Удлинение ΔL вызывает деформацию трубопровода на длине компенсационного плеча ΔL . Длина компенсационного плеча ΔL зависит от наружного диаметра трубопровода, удлинения ΔL и константы для данного материала, а также должна быть подобрана так, чтобы не вызывать избыточного напряжения в трубопроводе. Удлинение ΔL как функция длины трубы ΔL и прироста температуры ΔL приводится в таблице ΔL :

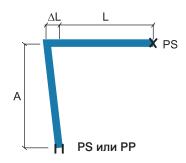
Таб. 5 Полное изменение длины L [мм] - Система KAN-therm Steel

I feet					Δ T	[°C]				
L [м]	10	20	30	40	50	60	70	80	90	100
1	0,11	0,22	0,32	0,43	0,54	0,65	0,76	0,86	0,97	1,08
2	0,22	0,43	0,65	0,86	1,08	1,30	1,51	1,73	1,94	2,16
3	0,32	0,65	0,97	1,30	1,62	1,94	2,27	2,59	2,92	3,24
4	0,43	0,86	1,30	1,73	2,16	2,59	3,02	3,46	3,89	4,32
5	0,54	1,08	1,62	2,16	2,70	3,24	3,78	4,32	4,86	5,40
6	0,65	1,30	1,94	2,59	3,24	3,89	4,54	5,18	5,83	6,48
7	0,76	1,51	2,27	3,02	3,78	4,54	5,29	6,05	6,80	7,56
8	0,86	1,73	2,59	3,46	4,32	5,18	6,05	6,91	7,78	8,64
9	0,97	1,94	2,92	3,89	4,86	5,83	6,80	7,78	8,75	9,72
10	1,08	2,16	3,24	4,32	5,40	6,48	7,56	8,64	9,72	10,80
12	1,30	2,59	3,89	5,18	6,48	7,78	9,07	10,37	11,66	12,96
14	1,51	3,02	4,54	6,05	7,56	9,07	10,58	12,10	13,61	15,12
16	1,73	3,46	5,18	6,91	8,64	10,37	12,10	13,82	15,55	17,28
18	1,94	3,89	5,83	7,78	9,72	11,66	13,61	15,55	17,50	19,44
20	2,16	4,32	6,48	8,64	10,80	12,96	15,12	17,28	19,44	21,60

Подбор Г, Z и П-образных компенсаторов

Таб. 6 Требуемая длина компенсационного плеча A [мм] для KAN-therm Steel

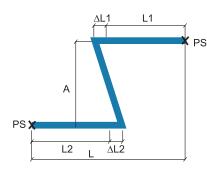
Удли-	Наружный диаметр трубы d _{нар} [мм]												
нение $\varDelta L$	12	15	18	22	28	35	42	54	64	66,7	76,1	88,9	108
[MM]	Требуемая длина компенсационного плеча А [мм]												
2	220	246	270	298	337	376	412	468	509	520	555	600	661
4	312	349	382	422	476	532	583	661	720	735	785	849	935
6	382	427	468	517	583	652	714	810	882	900	962	1039	1146
8	441	493	540	597	673	753	825	935	1018	1039	1110	1200	1323
10	493	551	604	667	753	842	922	1046	1138	1162	1241	1342	1479
12	540	604	661	731	825	922	1010	1146	1247	1273	1360	1470	1620
14	583	652	714	790	891	996	1091	1237	1347	1375	1469	1588	1750
16	624	697	764	844	952	1065	1167	1323	1440	1470	1570	1697	1871
18	661	739	810	895	1010	1129	1237	1403	1527	1559	1665	1800	1984
20	697	779	854	944	1065	1191	1304	1479	1610	1644	1756	1897	2091
22	731	817	895	990	1117	1249	1368	1551	1689	1724	1841	1990	2193
24	764	854	935	1034	1167	1304	1429	1620	1764	1800	1923	2079	2291
26	795	889	973	1076	1214	1357	1487	1686	1836	1874	2002	2163	2385
28	825	922	1010	1117	1260	1409	1543	1750	1905	1945	2077	2245	2475
34	909	1016	1113	1231	1388	1552	1700	1928	2099	2143	2289	2474	2727


Таб. 6 Требуемая длина компенсационного плеча A [мм] для KAN-therm Steel

Удли-	Наружный диаметр трубы d _{нар} [мм]												
нение $\varDelta L$	12	15	18	22	28	35	42	54	64	66,7	76,1	88,9	108
[MM]	Требуемая длина компенсационного плеча А [мм]												
30	854	955	1046	1156	1304	1458	1597	1811	1972	2013	2150	2324	2561
32	882	986	1080	1194	1347	1506	1650	1871	2036	2079	2221	2400	2645
34	909	1016	1113	1231	1388	1552	1700	1928	2099	2143	2289	2474	2727

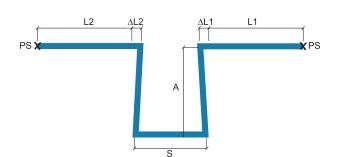
В таблице 6 приводится требуемая длина компенсационного плеча A для различных значений удлинения ΔL и наружного диаметра трубы $d_{\text{\tiny nap}}$.

Принципы подбора компенсаторов различного типа:


Г - образный компенсатор

- $oldsymbol{A}$ длина компенсационного плеча
- PP подвижная опора (возможно перемещение только вдоль оси трубы)
- PS точка неподвижной опоры (невозможны какие-либо перемещения трубопровода)
- L начальная длина трубопровода
- ΔL удлинение трубопровода

Для расчета компенсационного плеча A необходимо принять эквивалентную длину $L_{,=}L$ и для этой длины определить из таблицы 5 значение удлинения ΔL , а затем найти длину компенсационного плеча ΔL по таблице 6.


Z - образный компенсатор

- $oldsymbol{A}$ длина компенсационного плеча
- **PS** точка неподвижной опоры (невозможны какие-либо перемещения трубопровода)
- L начальная длина трубопровода
- ΔL удлинение трубопровода

Для расчета компенсационного плеча необходимо принять за эквивалентную длину L, сумму L1 и L2: L,=L1+L2 для этой длины определить эквивалентное удлинение ΔL из таблицы 5, а затем найти длину компенсационного плеча ΔL по таблице 6.

П - образный компенсатор

- $oldsymbol{A}$ длина компенсационного плеча
- PS точка неподвижной опоры (невозможны какие-либо перемещения трубопровода)
- $oldsymbol{L}$ начальная длина трубопровода
- ΔL удлинение трубопровода
- $oldsymbol{S}$ ширина П-образного компенсатора

В случае расположения неподвижной точки опоры PS на отрезке, представляющем собой ширину компенсатора S для расчета компенсационного плеча A необходимо принять за эквивалентную длину L, большее из значений L1 и L2: L,=max(L1,L2) и для этой длины найти эквивалентное удлинение ΔL из таблицы S, а затем длину компенсационного плеча S по таблице S.

Ширина S компенсатора рассчитывается из зависимости: S = A/2.

Таблица подбора фланцевых соединений Steel

Код каталожный	Размер	Кол-во болтов/ гаек	Размер болта	Класс болта	Класс гайки	Кол-во прокладок	Фланец	Уплотнение плоское
6341500	35 DN32 PN16	4	M16	8.8	8	8	DN32	DN32 EPDM
6341511	42 DN40 PN16	4	M16	8.8	8	8	DN40	DN40 EPDM
6341522	54 DN50 PN16	4	M16	8.8	8	8	DN50	DN50 EPDM
6303043	64 DN65 PN16	4	M16	8.8	8	8	DN65	DN65 EPDM
6340323	66,7 DN65 PN16	4	M16	8.8	8	8	DN65	DN65 EPDM
620659.6	76,1 DN65 PN16	4	M16	8.8	8	8	DN65	DN65 EPDM
620660.7	88,9 DN80 PN16	8	M16	8.8	8	16	DN80	DN80 EPDM
620661.8	108 DN100 PN16	8	M16	8.8	8	16	DN100	DN100 EPDM